Skip to main content
Log in

Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared a pyrolytic graphite electrode (PGE) whose surface is covered with a thin film of a nano-mixture of graphite/diamond (NGD). The electrode is shown to be capable of electrochemically sensing of tryptophan (TRP) and 5-hydroxytryptophan (HTRP). The presence of the NGD film resulted in a remarkable increase in the peak currents and sharpness of the waves so that submicromolar concentrations of TRP and HTRP become detectable. Potential scan rates, the pH of the solution, the accumulation conditions and the amount of the modifier were optimized via cyclic voltammetry. Linear sweep voltammetry, under optimized accumulation time and in open circuit operation, was applied to the determination of TRP and HTRP with detection limits (S/N = 3) of 30 nM (TRP) and 6 nM (HTRP). The electrode can be easily prepared, displays high sensitivity, sharp peaks, long-term stability, and remarkable voltammetric reproducibility and repeatability. These properties make the sensor suitable for the trace analysis of TRP and HTRP in pharmaceutical and clinical preparations.

A pyrolytic graphite electrode modified with a thin film of a nano-mixture of graphite/diamond. This electrochemical sensor applied for determination of tryptophan and 5-hydroxytryptophan in aqueous solutions. The modified electrode showed a remarkable increase in the peak currents and sharpness of the waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baron R, Sljukic B, Salter C, Crossley A, Compton RG (2007) Development of an electrochemical sensor nanoarray for hydrazine detection using a combinatorial approach. Electroanalysis 19:1062–1068

    Article  CAS  Google Scholar 

  2. Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  3. Shahrokhian S, Ghalkhani M (2010) Glassy carbon electrodes modified with a film of nanodiamond–graphite/chitosan: application to the highly sensitive electrochemical determination of Azathioprine. Electrochim Acta 55:3621–3627

    Article  CAS  Google Scholar 

  4. Shenderova O, Jones C, Borjanovic D, Hens S, Cunningham G, Moseenkov S, Kuznetsov V, McGuire G (2008) Detonation nanodiamond and onion-like carbon: application in composites. Phys State Solidi 205:2245–2251

    Article  CAS  Google Scholar 

  5. Zhao L, Takimoto T, Ito M, Kitagawa N, Kimura T, Kumatso N (2011) Choromatographic separation of highly soluble diamond nanoparticles prepared bypoylglycerol grafting. Angew Chem Int Ed 50:1388–1392

    Article  CAS  Google Scholar 

  6. Yang G, Zheng W, Tian H, Wang X, Xu Q, Cheng J, Ho Y, Jiang Q (2008) Investigation on nanodiamond and carbon nanotube-diamond nanocomposite synthesized using RF-PECVD. Chem Vap Depos 14:236–240

    Article  CAS  Google Scholar 

  7. Enoki T, Takai K, Osipov V, Baidakova M, Vul’ A (2009) Nanographene and nanodiamond: new members in the nanocarbon family. Chem Asian J 4:796–804

    Article  CAS  Google Scholar 

  8. Orlanducci S, Tamburri E, Terranova ML, Rossi M (2008) Nanodiamond-coated carbon nanotubes: early stage of the CVD growth process. Chem Vap Depos 14:241–246

    Article  CAS  Google Scholar 

  9. Krueger A (2008) New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J 14:1382–1390

    Article  CAS  Google Scholar 

  10. Kaplan RD, Mann JJ (1982) Altered platelet serotonin uptake kinetics in schizophrenia and depression. Life Sci 31:583–588

    Article  CAS  Google Scholar 

  11. Nakajima T, Kudo Y, Kaneko Z (1978) Clinical evaluation of 5-hydroxy-L-tryptophan as an antidepressant drug. Folia Psychiatr Neurol Jpn 32:223–230

    CAS  Google Scholar 

  12. Martins AC, Gloria MB (2010) Changes on the levels of serotonin precursors – tryptophan and 5-hydroxytryptophan – during roasting of Arabica and Robusta coffee. Food Chem 118:529–533

    Article  CAS  Google Scholar 

  13. Kema IP, de Vries EGE, Muskiet FAJ (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B 747:33–48

    Article  CAS  Google Scholar 

  14. Neels OC, Jager PL, Koopmans KP, Eriks E, de Vries EGE, Kema IP, Elsinga PH (2006) Development of a reliable remote-controlled synthesis of b-[11C]-5-hydroxy-L-tryptophan on a Zymark robotic system. J Label Compd Radiopharm 49:889–895

    Article  CAS  Google Scholar 

  15. Kochen W, Steinhart H (1994) L-tryptophan, current prospects in medicine and drug safety. de-Gruyter, Berlin

    Google Scholar 

  16. Wang W, Qiu B, Xu X, Zhang L, Chen G (2004) Separation and determination of L-tryptophan and its metabolites by capillary micellar electrokinetic chromatography with amperometric detection. Electrophoresis 25:903–910

    Article  Google Scholar 

  17. Wu JM, Shi QZ, Wang GS, Peng TZ (1994) Potato-juice modified carbon paste electrode for the determination of tryptophan. Chin J Anal Chem 22:599–601

    CAS  Google Scholar 

  18. Wang GS, Peng TZ, Shen BZ, Zhu PL, Qu LN (1993) Determination of amino acid with montmorillonite modified carbon paste electrode I. Determination of tryptophan. Chin J Anal Chem 21:779–782

    CAS  Google Scholar 

  19. Huang KJ, Xu CX, Xie WZ, Wang W (2009) Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode. Colloids Surf B: Biointerface 74:167–171

    Article  CAS  Google Scholar 

  20. Shahrokhian S, Fotouhi L (2007) Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sens Actuators B 123:942–949

    Article  Google Scholar 

  21. Nana CG, Feng ZZ, Li WX, Ping DJ, Qin CH (2002) Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal Chim Acta 452:245–254

    Article  Google Scholar 

  22. Wu FH, Zhao GC, Wei XW, Yang ZS (2004) Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode. Microchim Acta 144:243–247

    Article  CAS  Google Scholar 

  23. Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241–247

    Article  CAS  Google Scholar 

  24. Banks CE, Compton RG (2006) New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131:15–21

    Article  CAS  Google Scholar 

  25. Wrona MZ, Dryhurst G (1990) Oxidation chemistry of 5- hydroxytryptamine. J Electroanal Chem 278:249–267

    Article  CAS  Google Scholar 

  26. Zhang Z, Wang E (2000) Electrochemical principles and methods. Science, Beijing, p 242

    Google Scholar 

  27. Jin GP, Peng X, Chen QZ (2008) Preparation of novel arrays silver nonoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan’s oxidation. Electranalysis 20:907–915

    Article  CAS  Google Scholar 

  28. Liu Y, Xu L (2007) Electrochemical sensor for tryptophan determination based on copper-cobalt hexacyanoferrate film modified graphite electrode. Sensors 7:2446–2457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahrokhian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrokhian, S., Bayat, M. Pyrolytic graphite electrode modified with a thin film of a graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim Acta 174, 361–366 (2011). https://doi.org/10.1007/s00604-011-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0631-2

Keywords

Navigation